平谷信息港
法律
当前位置:首页 > 法律

大数据技术领域的九大痛点

发布时间:2020-04-10 08:32:10 编辑:笔名

尽管在Hadoop与NoSQL部署方面做足了准备,同样的问题仍然一次又一次反复出现。现在业界是时候尽快搞定这些麻烦事了。

有时候一艘巨轮的侧方出现了破洞,但业界却决定坐等船体下沉、并把希望寄托在销售救生艇身上。

也有些时候,这些问题似乎并没到要闹出人命的地步 类似我家里浴室的状况,只有往一边拧龙头才会出水。过一阵子我可能会找机会修理一下,但事实上这个问题已经存在了12年之久了。

而在面对大数据业务时,我可以列出九个长久以来一直令人头痛的问题,时至今日它们依然存在着并困扰着无数用户。

大数据痛点一号:GPU编程仍未得到普及

CPU的使用成本仍然较为昂贵,至少与GPU相比要贵得多。如果我们能够面向GPU开发出更理想的执行标准以及更多表现出色的驱动程序,那么相信 一个新的市场将由此诞生。就目前来讲,GPU的使用成本优势并没能得到很好的体现,这是因为我们难以针对其进行编程,而且几乎没办法在不建立特定模型的前 提下完成这项任务。

这种情况类似于,有些人希望编写出类似于ODBC或者JDBC的代码来处理某些高强度工作,并说服AMD或者英伟达将业务着眼点放在显卡产品之 外。假设我们原本已经习惯了使用Spark实现各类计算任务,而且压根不觉得这么做有什么问题; 但仿佛在一夜之间,其他人都开始构建所谓 GPGPU 集群,这自然会让我们有点措手不及之感。

不少技术人员都开始在这方面做出探索,但要想真正让成果实现市场化,我们至少需要搞定两大竞争对手 AMD以及英伟达,也许再加上英特尔。除非它们愿意联手合作,否则如果继续像现在这样把技术保密看作市场成功的实现途径,那么问题永远也找不到理想的答案。

     
咸宁治疗龟头炎医院哪家好
安徽专门治白癜风医院
贵阳哪里看癫痫比较好
江门治疗子宫内膜炎费用
北京首大医院咨询电话
友情链接